ELD V2 Earth Leakage Relay
Designed & Approved to AS/NZS 2081.3:2002

1. Description
The Ampcontrol ELD V2 Earth Leakage Relay is electronic in design and is based on microprocessor technology. The ‘Healthy’ LED flashes to indicate correct operation of the microprocessor. The Relay uses a toroid to measure earth fault current. A definite time operating characteristic is provided with adjustable trip sensitivity and time delay. When a fault occurs and the trip level and time delay is exceeded the relay’s trip function is activated, operating the trip contacts connected in the system control circuit. The ‘Trip’ LED is ‘On’ when a trip occurs. The trip condition is latched in non-volatile memory and requires operation of the reset input to clear the trip condition. An internal reset is also provided on the facia of the relay. The ‘Relay’ LED is ‘On’ to indicate the relay is energised.

A ten-segment LED bar graph indicates the % of leakage level being detected. This reading can be remotely monitored/displayed using the 4-20mA Output of the Relay. When the relay measures currents with frequencies much greater than 50Hz the bar graph LED fast flashes (5Hz) instead of being steady. Should the high frequency current persist until the time delay is exceeded the relay will trip. The ‘Har.Trip’ LED (Harmonic Trip) is ‘On’ when a trip occurs.

The ELD V2 Earth Leakage Relay is housed in a stainless steel case and can be either ‘DIN Rail’ mounted or ‘Panel Mounted’ through a 68 x 38mm cut out. When panel mounted the front of the ELD V2 Relay is designed to provide IP-56 ingress protection. There is provision to prevent unauthorised adjustment of the trip settings by sealing the post (in front of the knurled nut) with a lead seal, thus preventing the removal of the front facia cover.

An internal switch mode power supply allows the ELD to operate from 25.6VAC to 132VAC or 20VDC to 185VDC.

2. Features
- Microprocessor based for high stability and accuracy.
- Adjustable trip level and time delay settings.
- Fail safe operation.
- Bar graph to monitor leakage level. 4-20mA Output for remote indication.
- Maximum leakage since last power up/reset stored in memory.
- Continual monitoring of the toroid.
- AC or DC Supply operation.
- Functions normally for a period of two (2) seconds during extreme power dip or power loss.
- Designed and tested to AS/NZS 2081.3:2002 for use in mining.

3. Application
The ELD Relay has been designed and approved for use on earth fault-limited systems. To ensure maximum protection the earth leakage system should be used in conjunction with the other protection systems covered by AS2081. The collective systems are designed to limit touch and step potentials.

The relay is also suitable for industry where equipment or system earth leakage protection is required.

The relay is not suitable for personal protection, i.e. users of portable drills, grinders etc, which require trip levels of 20-30mA, with instantaneous operation. (Refer AS3190).

The Relay continually monitors the toroid and if the connection is lost the relay will trip and flash the ‘CT Fault’ LED.

3.1 Methods of Earth Leakage Protection
There are two methods of protection used. They are the Core Balance and Series Neutral earth leakage protection systems. (See ELD user Manual E09982 for full details).

Core Balance:
With this method the three phases are passed symmetrically through the toroid. If there is no earth fault, the vector sum of the currents in a three-phase supply is zero. If current from any phase flows to earth the system becomes unbalanced. The toroid produces an output, which trips the relay.

Series Neutral:
With this method the neutral connection of the supply transformer is passed through the toroid. An earth fault on any of the phase conductors causes an earth current which returns, through the toroid, to the star point of the transformer and trips the relay.

A test current is injected through the window of the toroid to test the operation of the relay (See typical connection diagram, page 2). To reset the relay press the button located on the facia of the relay or provide an external normally open contact (it is recommended that a twisted pair be used between the N/O contact and the reset input). The reset button is also used to access the memory of the processor to view the maximum level of leakage since the previous trip. A section of the bar graph will slow flash (2Hz) indicating the peak level while, the reset button is held closed and will continue to flash for 1 second after the reset button is released.
3.2 Toroids
The ELD Relay is designed for use with Ampcontrol EL500S series Toroids. They are available with window sizes 25, 60, 112mm. These allow trip settings from 100mA to 500mA.

3.3 Mode of Operation
The relay can only be operated in the fail-safe mode of operation.
This is the default mode, where the relay drops out on fault or loss of power. Power to the relay is from the line side of the isolating device or from an independent supply.

4. Specifications
Relay Supply Volts: 25.6 – 132VAC, 20-185VDC

4-20mA Output:
The ‘Loop Powered’ current output represents the leakage current as a percentage of the trip level.
4mA => 0% leakage, 20mA =>120% leakage
(100% = 17.33mA)
Maximum Loop Resistance = \[Vs-10\] x 50, where Vs must be greater than 10VDC and less than 30VDC.

Relay Contacts:
1 N/O, 1 C/O. Rated at 5A 250V.

Dimensions: 47 H x 77 W x 116 D mm

Trip and Time Delay Settings:
Two separate rotary, 16 position switches, set the trip and time delay parameters of the relay.

<table>
<thead>
<tr>
<th>Switch Position</th>
<th>Trip Level mA</th>
<th>Time Delay mS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>1</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>350</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>400</td>
<td>350</td>
</tr>
<tr>
<td>7</td>
<td>450</td>
<td>400</td>
</tr>
<tr>
<td>8</td>
<td>500</td>
<td>450</td>
</tr>
<tr>
<td>9</td>
<td>750</td>
<td>500</td>
</tr>
<tr>
<td>A</td>
<td>1000</td>
<td>500</td>
</tr>
<tr>
<td>B</td>
<td>1250</td>
<td>500</td>
</tr>
<tr>
<td>C</td>
<td>1500</td>
<td>500</td>
</tr>
<tr>
<td>D</td>
<td>1750</td>
<td>500</td>
</tr>
<tr>
<td>E</td>
<td>2000</td>
<td>500</td>
</tr>
<tr>
<td>F</td>
<td>2500</td>
<td>500</td>
</tr>
</tbody>
</table>

Important Note: The above table refers to Version 2 of the ELD Relay, designed and tested to AS/NZS 2081.3:2002. Switch positions 9-F have been modified from the Version 1 relay to comply with the 2002 version of the standard. Verify you have the correct version of the relay by checking that 'V2' is printed on the fascia, as shown on the image in this document, before selecting positions 9-F of this table

5. Equipment List
E09911 ELD V2 Earth Leakage Relay
E08406 ELD DIN Rail Mounting Kit
E08554 ELD-ELC Adapter Kit
E08554 ELD-ELC/F Adapter Kit
C18068 Toroid - 25mm ID
C18058 Toroid - 60mm ID
C18057 Toroid - 112mm ID